Evolution of Texture and Dislocation Distributions in High-ductile Austenitic Steel during Deformation

نویسندگان

  • Shigeo Sato
  • Toshiki Yoshimura
  • Kazuaki Wagatsuma
  • Shigeru Suzuki
چکیده

Fe-Mn-C austenitic steels exhibit outstanding high-ductile deformation in their plastic regions along with significant microstructural evolution. In this study, to characterize the microstructural evolution during deformation of these steels, line-profile and texture analyses were carried out using X-ray diffraction. The convolutional multiple whole profile fitting procedure was used for a line-profile analysis of 2– diffraction data to evaluate variations of crystallite size, dislocation density, and dislocation arrangement during tensile deformation. A substantial refinement of the crystallite size proceeded at an early deformation stage. In addition, the dipole character of dislocations was enhanced with an increase in the tensile strain. Texture evolution was characterized by the analysis of orientation distribution functions. Three texture components grew with an increase in the tensile strain. According to the pole figure describing the full width at half maximum distribution of the 220 reflection, the nontextured grains had more microstructural defects than the textured grains. To evaluate the microstructural defects in detail, the 220 reflection observed at each texture orientation was analyzed by the single-line profile method. The crystallite size and dislocation density were almost comparable, irrespective of the kind of texture component. The crystallite size of the nontextured grains was also comparable to that of the textured grains, whereas the nontextured grains had a dislocation density several times that of the textured grains. Based on these microstructural data, the origin of the mechanical properties of the Fe-Mn-C steel was discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microstructural evolution of 304 austenitic stainless steel in friction stir welding process

Friction stir welding (FSW) was conducted on AISI 304 austenitic stainless steel plate with 2 mm thickness. The FSW was performed at a welding and rotational speeds of 50 mm/min and 400 rpm, respectively. Microstructure observations by the optical microscopy showed that a severe grain refinement occurred in the stir zone (SZ). Electron backscattered diffraction analysis (EBSD) results indicated...

متن کامل

Grain Size Effect on the Hot Deformation Processing Map of AISI 304 Austenitic Stainless Steel

In this study, the hot deformation processing map of AISI 304 austenitic stainless steel in two initial grain sizes of 15 and 40 μm was investigated. For this purpose, cylindrical samples were used in the hot compression test at the temperature range of 950-1100 °C and the strain rate of 0.005-0.5% s-1. At first, the relationship between the peak stress and Zener-Hollomon parameter w...

متن کامل

Microstructural evolution of 304 austenitic stainless steel in friction stir welding process

Friction stir welding (FSW) was conducted on AISI 304 austenitic stainless steel plate with 2 mm thickness. The FSW was performed at a welding and rotational speeds of 50 mm/min and 400 rpm, respectively. Microstructure observations by the optical microscopy showed that a severe grain refinement occurred in the stir zone (SZ). Electron backscattered diffraction analysis (EBSD) results indicated...

متن کامل

Texture Evolution in Low Carbon Steel Fabricated by Multi-directional Forging of the Martensite Starting Structuree

It has been clarified that deformation and annealing of martensite starting structure can produce ultrafine-grained structure in low carbon steel.  This study aims to investigate the texture evolution and mechanical properties of samples with martensite structure deformed by two different forging processes. The martensitic steel samples were forged by plane strain compression and multi-directio...

متن کامل

The role of dense dislocation walls on the deformation response of aluminum alloyed hadfield steel polycrystals

The deformation response and texture evolution of aluminum alloyed Hadfield steel polycrystals is explored in the presence of high-density islocation walls. A recently developed visco-plastic self-consistent model accounting for the contribution of the dense dislocation walls to strain ardening was utilized in predicting the room temperature deformation response under tension and the accompanyi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011